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GOAL:
o Numerical simulation of inductively coupled plasma torches (ICP)

e This study is a collaboration of the Laboratory of Electric Arc and Thermal
Plasma in Clermont-Ferrand

PRINCIPLE:

@ The use of plasma torches is a chemical analytical technique to detect trace
metals in environmental samples.

o It consists in ionizing a sample by injecting it in a plasma (in general Argon):
Atoms are ionized by a hot flame (6 000 — 8000 K).

@ The sample experiences melting (solid), vaporization, then ionization.
e Temperature is maintained by magnetic induction (using a HF generator).

lons are detected either by mass spectrometry or by emission spectrométry.
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A mathematical model for ICP

Mathematical modelling of the ICP process takes into account the following
phenomena:

o Electromagnetic induction: We use a quasi-static eddy current model
(Displacement currents are neglected). The main difficulty comes from the fact
that only a part (unknown) of the gas transforms into plasma and is then
electrically conducting.
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A mathematical model for ICP

Mathematical modelling of the ICP process takes into account the following
phenomena:

o Electromagnetic induction: We use a quasi-static eddy current model
(Displacement currents are neglected). The main difficulty comes from the fact
that only a part (unknown) of the gas transforms into plasma and is then
electrically conducting.

o Gas Dynamics: We have to deal with a compressible fluid flow that can be
assumed steady-state. For numerical reasons, we have chosen to treat a time
dependent model where convergence to a stationary solution is sought.
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A mathematical model for ICP

Mathematical modelling of the ICP process takes into account the following
phenomena:

o Electromagnetic induction: We use a quasi-static eddy current model
(Displacement currents are neglected). The main difficulty comes from the fact
that only a part (unknown) of the gas transforms into plasma and is then
electrically conducting.

o Gas Dynamics: We have to deal with a compressible fluid flow that can be
assumed steady-state. For numerical reasons, we have chosen to treat a time
dependent model where convergence to a stationary solution is sought.

o Radiative Transfer: We consider, for this study, a rather simple modelling.
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A mathematical model for ICP

Mathematical modelling of the ICP process takes into account the following
phenomena:

o Electromagnetic induction: We use a quasi-static eddy current model
(Displacement currents are neglected). The main difficulty comes from the fact
that only a part (unknown) of the gas transforms into plasma and is then
electrically conducting.

o Gas Dynamics: We have to deal with a compressible fluid flow that can be
assumed steady-state. For numerical reasons, we have chosen to treat a time
dependent model where convergence to a stationary solution is sought.

o Radiative Transfer: We consider, for this study, a rather simple modelling.

@ Due to the particular geometry of the setup, we use an axisymmetric description.
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1. Electromagnetics
Eddy current equations in quasi-static regime (time-harmonic):

curlH=1J

iwpoH + curl E =0
J=0cE



A mathematical model for ICP: Electromagnetics

1. Electromagnetics
Eddy current equations in quasi-static regime (time-harmonic):

curlH=J
iwpoH + curl E =0
J=0cE

where

: Current density
: Electric field
: Magnetic field

: Angular frequency

9 e T mMmw

: Electric conductivity

1o : Magnetic permeability of the vacuum
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A mathematical model for ICP: Electromagnetics

1. Electromagnetics

Eddy current equations in quasi-static regime (time-harmonic):

curlH=J
iwpoH + curl E =0
J=0cE

where

: Current density
: Electric field
: Magnetic field

: Angular frequency

9 e T mMmw

: Electric conductivity

1o : Magnetic permeability of the vacuum

Here we have neglected current transport by the fluid
(In fact J = o (E + pou x H)).
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We choose to formulate the problem in terms of the electric field. We have

{ curl curl E + iwpgoE =0

|E(x)] = O(Ix|™)

in R

[x] = oo
where o = o(e) with

U(e):{o if e < e,

> 0 otherwise
where e is the internal energy and ep is the ionization energy.



The current source is maintained by voltages V) supplied in each inductor Q, such
that we have the energy identity

/ \curIE\2+in0/U|E|2:iwuozvk/ cE-n
R3 Q P Sk

where Q = U, Q is the union of conductors and Sy is a “cut” in the inductor Qy, i.e.
such that Qg \ Sk is simply connected.
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We use cylindrical coordinates and assume rotational symmetry.
For all k, Ay is the domain of parameters:

Ak :={(r,z); (rsin6@,rcos0,z) € Q, ¥ 6 € (0,2x]}.

We then look for solutions such that the current J satisfies J, = J, = 0.
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We use cylindrical coordinates and assume rotational symmetry.
For all k, Ay is the domain of parameters

k :=A{(r,z); (rsinf,rcosf,z) e Q. V0 ¢c (0,2r]}

We then look for solutions such that the current J satisfies J, = J, =0
We obtain for E := Ey the problem

5] iwpoo
‘5(?5( )) o +iwnooE = 07 ZVM
|E(r,2)] = O((r* + 2%)72)

in R3

(r2 +22) — 00
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A mathematical model for ICP: Fluid Dynamics

2. Gas—Plasma Flow
We use compressible Euler equations (i.e. we neglect viscosity and thermal
conductivity effects) with the following features:

o Gas flow is generated by the Lorentz force (averaged on one time period)
o Energy source is given by Joule power density (also averaged).
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A mathematical model for ICP: Fluid Dynamics

2. Gas—Plasma Flow

We use compressible Euler equations (i.e. we neglect viscosity and thermal
conductivity effects) with the following features:

o Gas flow is generated by the Lorentz force (averaged on one time period).
o Energy source is given by Joule power density (also averaged).

V- -(pu®u)+Vp=pg+ %Re(Jxﬁ)
V.-(pu)=0
V-((€+p)u):%Re(J-E)fR

p=p(p,e)

where u is the velocity, p is the pressure, p is the density, g is the gravity vector, e is
the specific internal energy and £ is the total energy by £ = pe + %p |u|?, R is the
radiation source.
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A mathematical model for ICP: Fluid Dynamics

2. Gas—Plasma Flow

We use compressible Euler equations (i.e. we neglect viscosity and thermal
conductivity effects) with the following features:

o Gas flow is generated by the Lorentz force (averaged on one time period).
o Energy source is given by Joule power density (also averaged).

V- -(pu®u)+Vp=pg+ %Re(Jxﬁ)
V.-(pu)=0
V-((€+p)u):%Re(J-E)fR

p=p(p,e)

where u is the velocity, p is the pressure, p is the density, g is the gravity vector, e is
the specific internal energy and £ is the total energy by £ = pe + %p |u|?, R is the
radiation source.

In the following, we restrict the presentation to an ideal gas:

p=(y—1)pe ~: Ratio of specific heats
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Axisymmetric Euler Equations

We consider time dependent compressible Euler equations.
Denoting by (r, 0, z) the cylindrical coordinates and by (ur, ug, u;) the components of
a vector in this system, we obtain the system (taking into account f—invariance):
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Axisymmetric Euler Equations

We consider time dependent compressible Euler equations.
Denoting by (r, 0, z) the cylindrical coordinates and by (ur, ug, u;) the components of
a vector in this system, we obtain the system (taking into account f—invariance):

o o o
a(rp) + a(rﬂur) + 5(’0“2) =0
2 (rour) + oo+ 19) + o (rpurs) = puB 4 p

O (o) + - (rpurs) + ~(rpul 4 p) = o

) (I‘ ) ) (r ) ) (r )
puU “F pUgl 4F Pl U, = —pupu
t 6 7 oUr oUz oUr

0 0 0
56 + 5, (rur(€ + p)) + o~ (ruz(€ + p)) = Sy + Sr

p=(v—1)pe

where f, and f; are r and z components of the Lorentz force.
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This system can be written in the conservative form:

0 1o} 0
—(rU) + —(rFr (U —(rFz(VU)) = G(U
S (0) + - (rFH(U) + o (Fe(U)) = G(U)
where
4 pur puz 0
pur pu? +p puruz pud +p+f;
U= | puz | ,F-(U)= puz U JEU)=| pui2+p |,GU) = fz
pUg pug Ur pug Uz —puUgur
£ Ur(g aF P) Uz(g + P) fJ — fR
This formulation involves a divergence form that can be handled by a finite volume
method. The right-hand side can be treated as a source term.
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A finite volume method

Let us consider a triangulation of the domain Q2 of parameters (r,z). We define:
— T; : Triangle, 1 < i <nt
— e : Common edge to triangles T; and T;
nj; = (njj,r, njj,z) : Unit normal to triangle T; pointing to T;

— v(i) : Set of indexes of the (3) neighbor triangles of T;
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A finite volume method

Let us consider a triangulation of the domain Q2 of parameters (r,z). We define:
— T; : Triangle, 1 < i <nt
— e : Common edge to triangles T; and T;
nj; = (njj,r, njj,z) : Unit normal to triangle T; pointing to T;
— v(i) : Set of indexes of the (3) neighbor triangles of T;

Integrating the system of equations on a triangle T; and using the divergence theorem,
we obtain
d

— U(r,z,t)rdrder/ (F,(U)n,-j,,+FZ(U)n,-j_Z)rdU:/ G(U)drdz
dt Jr, oT: ’ JTi

i
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A finite volume method

Let us consider a triangulation of the domain Q2 of parameters (r,z). We define:
— T; : Triangle, 1 < i <nt
— e : Common edge to triangles T; and T;
nj; = (njj,r, njj,z) : Unit normal to triangle T; pointing to T;
— v(i) : Set of indexes of the (3) neighbor triangles of T;

Integrating the system of equations on a triangle T; and using the divergence theorem,
we obtain

d
- U(r,z,t)rdrder/ (F,(U)n,-j,,+FZ(U)n,-j_Z)rdo:/ G(U)drdz
dt J1, aT; ' JT;

Let (t" = ndt),cn denote a uniform subdivision of [0, c0). We have
/ U(r,z, "y rdrdz = / U(r,z,t") rdrdz
Ti Ti
n+1

t
f/ / (F-(U)ng., + F2(U)ny ) r do dt
e Jor,

¢+l

+/ / G(U) drdzdt
e JT
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We set

and define the approximation

| Ti| —/ dr dz, |T|,—/ rdrdz, |ejl —/ do, |eU|,—/ rdo,
'r’. €,

&j

i

t") rdrd.
|T|r/ U(r,z,t") rdrdz.

=} [ A2 N G4




We set

&j

| Ti| _/ dr dz, |T|,_/ rdrdz, |e,-j\'—/ do, |e,J|r_/ rdo,
7". €,
and define the approximation

i

U r,z,t") rdrdz.

We define the approximate flux

1
Fo ~
Yo Stleylr

I
and the source term

n+1
/ / (Fr(U)”Ur+Fz(U)nU,z)rdadt
tl'l

n+1
G;’zﬁ / G(U) dr dz dt.



We set
| Ti| ::/ drdz, \T,-|,:/ rdrdz, |ejl ::/ do, |e,-j|r:/ rdo,
T; T; €jj ej
and define the approximation

U' = / U(r,z,t") rdrdz.
ITilr

We define the approximate flux:

n+1
Fo o~ 5t|e,,|,/ /(F,(U)n,J,—i-FZ(U)n,J’ )rdo dt

and the source term "
1 o
G~ / G(U) dr dz dt.
ot | Til

We then introduce the scheme

T UTHE = |Til Uf — 6t Y eyl Ff +6t|Ti|G(U)  1<i<nr.
jev(i)

- e SN E S
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For instance, the Rusanov scheme consists in defining the flux

1
A=

The finite volume scheme is entirely determined by the choice of F;! and G/.
T2

(FU) + Fo(U)mir + 5 (FoU) + F(UD)mc = XU = U)

where )\j; is large enough to ensure stability.




The finite volume scheme is entirely determined by the choice of F;! and G/.
For instance, the Rusanov scheme consists in defining the flux

1 1
Fi = 5 (F(UD) + Fr( Uy, + 5 (Fa(UD) + Fe(U)ngc = Ay(U; = U)

where )\j; is large enough to ensure stability.

Other possible schemes:

e Godunov: It consists in solving exactly the resulting Riemann problems.
e HLL (Harten, Lax, Van Leer): Uses an approximation of Riemann problems
e HLLC (4 Contact) : Adaptation of the HLL scheme to contact discontinuities
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A second order scheme (MUSCL)

@ The first MUSCL scheme (Monotonic Upwind Scheme for Conservation Laws) is
due to Van Leer ('79) for the 1-D case.

@ The literature contains numerous extensions to the multidimensional case.

e T. Buffard, S. Clain and V. Clauzon have developed a new extension based on
directional derivatives.
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A second order scheme (MUSCL)

@ The first MUSCL scheme (Monotonic Upwind Scheme for Conservation Laws) is
due to Van Leer ('79) for the 1-D case.

@ The literature contains numerous extensions to the multidimensional case.

e T. Buffard, S. Clain and V. Clauzon have developed a new extension based on
directional derivatives.

We have extended this extension for the axisymmetrical case.
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Consider the conservation law:
du
— f =0
e T W=

x€eR, t>0



MUSCL schemes

Consider the conservation law:

du n 0
ot Ox

f(u) =0 xER, t>0

A basic finite volume scheme uses a piecewise constant approximation. Let us
consider, for instance if f/ > 0, the first-order upwind scheme:

du; N f(ui) — f(ui—1) -
dt Sx B

0

This scheme is known to be diffusive, i.e. it smooths shocks and discontinuities.
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MUSCL schemes

Consider the conservation law:

du n o
ot Ox

f(uy=0 xeR, t>0

A basic finite volume scheme uses a piecewise constant approximation. Let us
consider, for instance if f/ > 0, the first-order upwind scheme:

duj N f(u) — f(ui—1)
dt dx B

0

This scheme is known to be diffusive, i.e. it smooths shocks and discontinuities.

In order to obtain less numerical diffusion, we can consider a piecewise linear
approximation like:
du; f(ui+%)—f(u,_%)
dt ox

=0

where

1 1
u. 1 := E(u,- =+ u,-+1), uii% = E(u,',l + u,-).

This scheme is more accurate but is oscillating (non TVD).
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We can then resort to MUSCL type schemes:

d *1 7f* f

A
T2 T2 _

dt + X

Numerical fluxes 1‘_’:‘E , correspond to a nonlinear combination of approximations of first
1

and second order on f(u).

\\R

Uj_1/2
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We define:
* IR L R
Uil = uii%(uii%’uii%)
ut
2

1
=ui + §¢(ri)(ui+1 — u;)
1
uf =i — 5 riva)(uive — i)
U — Uiy
r=

Uiyl — Ui

o(r)=0if r <0,

The function ¢ is a slope limiter guaranteeing that the obtained solution is TVD, with
P(1) = 1.



We define:
* IR L R
Uil = uii%(uii%’uii%)
ot

1
=ui + §¢(ri)(ui+1 — u;)
uR

1
= Ujy1 — §¢(ri+1)(ui+z — Uit1)
Cup— Ui
r=

Uiyl — Ui

o(r)=0if r <0,
For instance, the limiter minmod is defined by

The function ¢ is a slope limiter guaranteeing that the obtained solution is TVD, with
P(1) = 1.

¢(r) = max(0, min(1, r)), rl_|>ng° o(r)=1.



B;, B;] with the edge e;; for all j € v(i).
j ij

For a triangle T;, we denote by B; its barycenter and by Q;; the intersection of the line




MUSCL schemes for Euler equations

For a triangle T;, we denote by B; its barycenter and by Q;; the intersection of the line
[Bi, Bj] with the edge e; for all j € v(i).

We introduce barycentric coordinates (p;j)jc,(iy by
> piBj =B > =1
jev(i) jev(i)
We assume that B; is strictly in the interior of the triangle having barycenters of
neighboring triangles as vertices. Thus p;; > 0.
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MUSCL schemes for Euler equations

For a triangle T;, we denote by B; its barycenter and by Q;; the intersection of the line
[Bi, Bj] with the edge e; for all j € v(i).

We introduce barycentric coordinates (p;j)jc,(iy by

> piBj =B > =1
Jjev(i) Jjev(i)
We assume that B; is strictly in the interior of the triangle having barycenters of

neighboring triangles as vertices. Thus p;; > 0.

We define the direction
B;iB;

|B;B;|

tij =
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We have then obtained a decomposition

ti= Y Biktic,

Jev(i)
kfi

Bijk =

_ pik |BiBy|
pij |BiB;




We have then obtained a decomposition

pik |BiBk
ti= > Biktic Bk = —— ‘BIB‘
jev(i) rij |BiBjl

ki

Let us define a reconstruction of the values Uj; on the edges e;;.
Let v denote any component of U (piecewise constant).

We define a first set of downwind slopes by

+_ YTV
;=

BB vV jev(i), 1<i<nr.
iBj

p;r appears as an approximation of the derivative of v in the direction t;.
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We have then obtained a decomposition

pik |BiBk
ti= > Biktic Bk = —— ‘BIB‘
jev(i) rij |BiBjl

ki

Let us define a reconstruction of the values Uj; on the edges e;;.
Let v denote any component of U (piecewise constant).
We define a first set of downwind slopes by

L_ViTVioy . .
T = cv(i), 1<i<nr.
p,j |BIBJ| J ()7 > I nT

p;r appears as an approximation of the derivative of v in the direction t;.
The upwind slope is defined by

Py =— E Bipy ¥V jew(i), 1<i<nr.
Kev(i)
k)
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We have then obtained a decomposition

pik |BiBy|
tj = Z Bijk tik Bijk = —— BIB
jev(i) pij |BiBjl

P

Let us define a reconstruction of the values Uj; on the edges e;;.
Let v denote any component of U (piecewise constant).
We define a first set of downwind slopes by

L_ViTVioy . .
T = cv(i), 1<i<nr.
PU |BIBJ| J ()7 > I nT

p;r appears as an approximation of the derivative of v in the direction t;.
The upwind slope is defined by

P =— E Bipy ¥V jew(i), 1<i<nr.
Kev(i)
k)

The slopes p;; are then obtained by a limiter. For instance

pjj := minmod (p;.r, P;)
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and the reconstruction of v on e;; is given by

vij = vi + pij | Bi Qjl
@ This construction is exact for affine functions: v(Qj;) = v if v is piecewise linear
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and the reconstruction of v on e;; is given by

vij = vi + pjj | B; Qjl
@ This construction is exact for affine functions: v(Qj;) = v if v is piecewise linear
o The principal advantage is that this construction is I-D. This enables using
well-known 1-D slope limiters.
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and the reconstruction of v on e;; is given by

vij = vi + pjj | B; Qjl

@ This construction is exact for affine functions: v(Qj;) = v if v is piecewise linear

o The principal advantage is that this construction is I-D. This enables using
well-known 1-D slope limiters.

@ The property p;; > 0 implies 3j; < 0. Therefore if v; is a local extremum we have
p;}'pi; < 0. Then p; = 0. We conclude that extrema do not increase.

u]
]
I
i
it

A2 N G4
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and the reconstruction of v on e;; is given by

vij = vi + pjj | B; Qjl

@ This construction is exact for affine functions: v(Qj;) = v if v is piecewise linear

o The principal advantage is that this construction is I-D. This enables using
well-known 1-D slope limiters.

@ The property p;; > 0 implies 3j; < 0. Therefore if v; is a local extremum we have
p;}'pi; < 0. Then p; = 0. We conclude that extrema do not increase.

o For positivity reasons, the reconstruction must be carried out on physical
variables and not on conservative ones.

u]
]
I
i
it
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We look for a solution (ur, ug, uz, p, €) that depends on r only and such that
uy = ug = 0. We obtain the system



We look for a solution (ur, ug, uz, p, €) that depends on r only and such that
uy = ug = 0. We obtain the system

d
E(rpu,) =0
d 2
7 (et £ p)) =p

< (rur(e+p)) =0

p=(y—1)pe




We look for a solution (ur, ug, uz, p, €) that depends on r only and such that
uy = ug = 0. We obtain the system

d

E(rpu,) =0

d

Z o +p) =p

< (rur(e+p)) =0

p=(y—1)pe
We deduce, for o, 8 € R
dp _ l4 w2
22— , ==
dr (ap2r2 - 2(,\/-';11))(7 - 1)r pr

u]
]
1l
n
it
N
el
Q

23/39



@ Stationary radial solutions
@ Shock tube (SOD): Some configurations
@ Supersonic flow in a channel




Density (kg.m™)

23

N
n

n

& Stationary solution
Second-order HLLC
——~- First-order HLLC

2
0.1

0.2

0.3
Radial direction (m)

0.4




Let us define the domain of parameters

N={(r,z); rel0,1), z€ (0,1)}.

We define A, = (0,1) x (0, 3), Ag = (0,1) x (3,1) and the initial conditions:

Ut =0)— {UL in AL

UR in AR

«0)>» «F» «=Z)» « =) = Q>
26/39



Shock Tube: Test 1

We test a configuration with a left rarefaction wave, a contact discontinuity and a
right shock wave. We prescribe for this:

pL=1 pr=0125, u =ugr=0, p =1, pr=0.1

1 T T T T T
r — Exact solution 1 28 — Exact solution
— First-order Rusanov — First-order Rusanov
08— — First-order HLLC 7 [ — First-order HLLC
0,61 &
2 2
2 | °
H g
3
04— £
021
[ 1 16
0 . ! . I . I . I . . I . I . ! . !
0 0.2 04 0,6 08 1 0 02 04 06 08

Axial direction Axial direction

Order 1: Rusanov Schemes and HLLC schemes. Mesh 1/100
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1 - - T - - 3 - - - -
[ — Exact solution 1 — Exact solution
08l — First-order Rusanov | r — First-order Rusanov
8 —— First-order HLLC —— First-order HLLC
[ 25
0,61 3
E 5
a | s L
H g
04— E
2k
02—
0 . I . I . I . I . 15 . I . I . I . I
[ 0,2 04 0,6 08 1 0 02 04 06 08
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Order 1: Rusanov and HLLC schemes. Mesh 1/200
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Shock Tube: Test 2

We test a configuration with a double shock and a contact discontinuity. This is
obtained by the conditions:

pL=pr =06, u =196, ug =—-6.2, p =460, pgr =46

40 . . . . . 300 . . . /, .
— Exact solution [
— Minmod
30— vanLeer
— van Albada 200
L >
2
z
]
c 20— b r
8
2
L =
100 — Exact solution
— Minmod
10— — van Leer
—— van Albada
0 . I . I . I . I . 0 . I . I . I . I .
0 0.2 0.4 0.6 08 1 0 02 0.4 0.6 0.8 1
Axial direction Axial direction

Order 2: Rusanov and HLLC schemes. Mesh 1/200
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Shock Tube: Test 3

We test a configuration with 2 rarefactions and a contact discontinuity where the
solution is close to vacuum state. This is obtained by the conditions:
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Order 2: Rusanov and HLLC shemes. Mesh 1/200
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We consider a channel flow with an oblique obstacle (10 degrees) forming a cone.
Problem data:
Poo = 10°Pa, poo = 1.16Kg/m>, Moo = 2
Mesh: 5176 triangles.
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ICP: A time integration scheme

We integrate in time until convergence to a stationary solution.
e Given E", U", we compute B" = i‘curl E".
o We set 0" := o(e") and solve the electromagnetic problem, which yields E"t1.

o We deduce .
i

Jn+1 — UnEnJrl’ Bn+1 = — curl En+1
w

and the sources

fz+1 — Jn+1 % Bn+17 f_jn+1 — Jn+1 . En+17 Rn+1 — R(en).

. . 1
e We perform a time step of the Euler system without source terms: U""2 .

o We update by adding the source term using implicit approximation:
P =,
pn+1un+1 — pnun + At ff

1
e = gmi 4 Ar(f)TE — RTTI),
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1-22096 elements
Hot initial area
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Test with 0 V

We take V = 0 for all k. In this case, we have a Riemann problem with a contact
discontinuity.

300 6150 12000 300 6150 12000

The contact discontinuity is preserved with the HLLC flux (right). The Rusanov flux
(left) is more dissipative.
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Test with 1500 V

We choose V| = 1500 volts for all k and add the radiation term

0075

0,037

005

300 6150 12000 300 6.15+03 1.20404

[ v =
After 100 s, we obtain by the HLLC flux HLLC a stationary solution. Using the
Rusanov flux, the temperature decreases until extinction.
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