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Introduction

CBM ?

Coalbed Methane (CBM) is a gas that occurs in association with coal. Methane is locked in coal
by the water in cleats. Gas production is generally facilitated by dewatering. Gas migrates then
through the coal matrix into the cleats. As more and more gas desorbs a two-phase flow regime
develops.

The mathematical model

Modelling of immiscible two-phase fluid flow in porous media (water + gas)

Gas is recovered by desorption from the coalbed matrix

Model for 2-D configurations

Capillary pressure is neglected

Numerical approximation by finite elements

MAMERN VI 2015 R. Touzani, L. Alessio 2/27



Introduction

CBM ?

Coalbed Methane (CBM) is a gas that occurs in association with coal. Methane is locked in coal
by the water in cleats. Gas production is generally facilitated by dewatering. Gas migrates then
through the coal matrix into the cleats. As more and more gas desorbs a two-phase flow regime
develops.

The mathematical model

Modelling of immiscible two-phase fluid flow in porous media (water + gas)

Gas is recovered by desorption from the coalbed matrix

Model for 2-D configurations

Capillary pressure is neglected

Numerical approximation by finite elements

MAMERN VI 2015 R. Touzani, L. Alessio 2/27



Principle of the CBM process
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Gas recovery main procedures
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The model

We consider a flow in porous medium of an immiscible mixture of water and gas.
Let Sw and Sg stand for the respective saturations of water and gas:

Sw + Sg = 1.

Mass conservation for each phase:

∂

∂t
(φ%wSw ) +∇ · (%wvw ) = 0

∂

∂t
(φ%gSg ) +∇ · (%gvg ) = fD

where:

%w , %g densities (water and gas)

φ Porosity (0 < φ0 ≤ φ(x) ≤ 1)

fD Rate of desorbed gas

In the following S = Sw (Sg = 1− S).
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Darcy equation:

vw = −
kw

µw
K∇p, vg = −

kg

µg
K∇p

where

vw , vg Velocity of water and gas

p Pressure (The same for both phases)

kw , kg Relative permeabilities

µw , µg Viscosities

K Absolute permeability tensor (assumed diagonal)

with:
kw = kw (S), kg = kg (S).

We define the mobilities:

mw (S) =
kw (S)

µw
, mg (S , p) =

kg (S)

µg (p)
,

m(S, p) = mw (S) + mg (S , p)
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The total velocity is defined by

v = vw + vg = −m(S , p)K∇p.

We deduce the system of equations:

∂

∂t
(φ%wS)−∇ ·

(
%wmwK∇p

)
= 0

∂

∂t
(φ%g (1− S))−∇ ·

(
%gmgK∇p

)
= fD

We now assume that the water and the rock are slightly compressible, i.e.

cw =
1

%w

d%w

dp
= Const. > 0,

cf =
1

φ

dφ

dp
= Const. > 0,

In addition, we consider a real gas model:

%g (p) =
p

RTZ(p)
, where 0 < Z(p) ≤ 1.
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We thus obtain

∂%w

∂t
= cw%w

∂p

∂t
, ∇%w = cw%w∇p,

∂φ

∂t
= cf φ

∂p

∂t
, ∇φ = cf φ∇p.

Neglecting nonlinear quadratic terms and dividing by %w the water conservation equation gives

φ
∂S

∂t
+ (cw + cf )φS

∂p

∂t
−∇ · (mwK∇p) = 0
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The equation of gas becomes:

∂

∂t
(φ(1− S)%g ) = φ(1− S)

∂%g

∂t
+ φ%g (1− S)

∂φ

∂t
− φ%g

∂S

∂t

= %g (1− S)
(
cg + cf

)
φ
∂p

∂t
− φ%g

∂S

∂t

where

cg (p) =
1

%g

d%g

dp
=

1

RT

Z(p)− Z ′(p)p

pZ2(p)
.

Neglecting nonlinear quadratic terms and dividing by %g we get:

−φ
∂S

∂t
+ (1− S)(cg + cf )φ

∂p

∂t
−∇ ·

(
mgK∇p

)
=

fD

%g
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Modelling of desorption

Denoting by V the adsorbed gas volume, we have the source term

fD = −%m%b
∂V

∂t
.

where %m and %b are the Methane and bulk densities.

We have, at equilibrium, the Langmuir isotherm:

V =
VLp

pL + p
,

where:

pL: Langmuir adsorption constant

VL: Available gas volume
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In a thermodynamical nonequilibrium situation, we have

∂V

∂t
= −

1

τ

(
V −

VLp

pL + p

)
where τ > 0 is a characteristic diffusion time.
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The complete model

We have the system:

φ
∂S

∂t
+ (cwφ+ cf )S

∂p

∂t
−∇ · (mwK∇p) = 0

−φ
∂S

∂t
+ (1− S)(cg + cf )φ

∂p

∂t
−∇ ·

(
mgK∇p

)
=
%m%b

τ%g

(
V −

VLp

pL + p

)
∂V

∂t
+

1

τ

(
V −

VLp

pL + p

)
= 0.

We can resort to the so-called Peaceman formulation: Adding these two equations we obtain:

φ
∂S

∂t
+ (cwφ+ cf )S

∂p

∂t
−∇ · (mwK∇p) = 0

ctφ
∂p

∂t
−∇ ·

(
mK∇p

)
=
%m%b

τ%g

(
V −

VLp

pL + p

)
∂V

∂t
+

1

τ

(
V −

VLp

pL + p

)
= 0

where ct = cwS + cg (1− S) + cf is the total compressibility coefficient.
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Remarks

1 The main advantage of this formulation is that

m ≥ m0 > 0 although mg ≥ 0, mw ≥ 0.

i.e. the equation does not degenerate.

2 Although the Peaceman formulation seems attractive, its performance, from numerical point
of view, gives poor accuracy. We shall however keep here its presentation for its relative
simplicity.

3 We have

∇ · (mwK∇p) = mw∇ · (K∇p) + K∇p · ∇mw = mw∇ · (K∇p) + m′w (S)K∇p · ∇S

which is a transport problem (for given p). This implies the necessity of using an upwind
scheme, if the capillary pressure is null (or small enough).
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Well modelling

In realistic situations, the domain (reservoir) contains wells with a small diameter (with respect to
the reservoir’s diameter). This is generally at the origin of serious numerical difficulties.

Consider, for instance, the case of a vertical well. We assume that the flow is radial in the vicinity
of the well. We also assume that the flow is incompressible in this neighborhood and has constant
properties.

The flow is then modelled in this neighborhood, for the water phase by

−∇ · (%wmwK∇p) =
qw

H
δ

where δ is the Dirac distribution at the center of the well, qw is the well’s production rate for the
water and H is the reservoir’s height.

We obtain the analytical solution

p(r) = p(rw )−
qw

2π%wmwκH
ln
( r

rw

)
, r = (x2

1 + x2
2 )

1
2 − rw

where rw is the well radius and κ =
√
K11K22.
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Let ϕ0 denote the P1–basis function at node x0 (well node), we have

%wmwH
∑
e⊂Ω0

∫
e
K∇p · ϕ0 dx = qw

where Ω0 is the support de ϕ0.

•x0

We assume that the analytical solution is a good approximation of the pressure at neighboring
nodes.

Using the expansion

p =
∑
i

piϕi in Ω0

we get

%wmwH
∑
e⊂Ω0

∑
i

(∫
e
Kϕi · ∇ϕ0 dx

)
pi = qw .

Then

%wmwH
∑
i 6=0

Ti (pi − p0) = qw where Ti =
2∑

`=1

∫
e`

K∇ϕi · ϕ0 dx
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Using the analytical solution, we obtain

Well model for the water phase

qw =

∑
i 6=0 Ti

1 +
1

2πκ

∑
i 6=0 Ti ln(ri/rw )

%wmwH(pb − p0)

For the gas phase, the situation is more delicate: One cannot assume that %g is constant in the
vicinity of a well.
We use the Kirchhoff transformation by defining

p̃ =

∫ p

p0

%g (s) ds

Then, we have
−mgκ∆p̃ = qg δ

the solution of which is given by

p̃(r) = p̃(rw )−
qg

2πmgκH
ln
( r

rw

)
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Numerical approximation

We use a P1–finite element method with a Streamline Upwind stabilization term:
Let T (Ω) denote a triangulation of Ω and let us define the finite dimensional space:

S = {ψ ∈ C0(Ω); ψ|K ∈ P1 ∀ K ∈ T (Ω)},

P = {q ∈ C0(Ω); q|K ∈ P1 ∀ K ∈ T (Ω)},

V = {W ; W|K = Const. ∀ K ∈ T (Ω)}.
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Streamline Upwind stabilization

Consider the diffusion-convection equation

−ε∆u + a · ∇u = f in Ω

It is well known that if the local Péclet number

Pe =
|a|h
2ε

> 1

then a standard (centered) discretization leads to a nonmonotone matrix and then to instabilities.

To remedy to this, a Petrov-Galerkin formulation has been proposed in the 80’s by T.J.R. Hughes
et al. and analyzed by C. Johnson. It consists in the following variational formulation:

∫
Ω
ε∇uh · ∇v dx +

∫
Ω

(a · ∇uh)v dx +
∑
K

hK

2|a|

∫
K

(a · ∇uh) (a · ∇v) dx =

∫
Ω
fv dx ∀ v ∈ Vh
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We define the variational formulation (We keep the same notation for the unknowns and their
approximations):
We seek S(·, t) ∈ S, p(·, t) ∈ P and V (t) ∈ V such that for all ϕ ∈ S and ψ ∈ P (assuming
Neumann boundary condition for pressure):

∫
Ω
φ
∂S

∂t
ϕ dx +

∫
Ω

(cwφ+ cf )S
∂p

∂t
ϕ dx +

∫
Ω
mwK∇p · ∇ϕ dx

+
∑

K∈T (Ω)

ξK

∫
K

(K∇p · ∇S)(K∇p · ∇ϕ) dx = −
nw∑
i=1

qwi

H
ϕ(xwi )

∫
Ω
ctφ

∂p

∂t
ψ dx +

∫
Ω
mK∇p · ∇ψ dx

=
%m%b

τ

∫
Ω

1

%g

(
V −

VL p

pL + p

)
ψ dx −

nw∑
i=1

qgi

H
ϕ(xwi )

∂V

∂t
+

1

τ%g

( VL p

pL + p
− V

)
= 0

with

ξK =
hK

2|K∇p|
|m′w (S)|
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Numerical approximation: Time discretization

We choose the implicit Euler scheme:

1

δt

∫
Ω
φn+1(Sn+1 − Sn)ϕ dx +

1

δt

∫
Ω

(cwφ
n+1 + cn+1

f )(pn+1 − pn)ϕ dx

+

∫
Ω
mn+1

w K∇pn+1 · ∇ϕ dx

+
∑

K∈T (Ω)

ξnK

∫
K

(K∇pn · ∇Sn+1)(K∇pn · ∇ϕ) dx = −
nw∑
i=1

qn+1
wi

H
ϕ(xwi )

1

δt

∫
Ω
cn+1
t φn+1(pn+1 − pn)ψ dx +

∫
Ω
mn+1K∇pn+1 · ∇ψ dx

=
%m%b

τ + δt

∫
Ω

1

%n+1
g

(
V n −

VL p
n+1

pL + pn+1

)
ψ dx −

nw∑
i=1

qn+1
gi

H
ϕ(xwi )

V n+1 =
1

τ + δt

(
τV n + δt

VL p
n+1

pL + pn+1

)
for all ϕ ∈ S and ψ ∈ P0.

Note that the variable V is decoupled from S and p.
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Adaptive time stepping

For numerical simulations, we resort two adaptive time stepping, for at least 2 reasons

There is a singularity in initial data, due to the fact that we start with a saturation state
(S = 1).

Realistic simulations require sudden changes of prescribed well pressures.

Then, in order to optimize the computational time, an adaptive time stepping procedure is used.
We use the following procedure:

For all n, we compute

αn =
δtn

ε

(
‖pn+1 − pn‖
‖pn‖

+
‖Sn+1 − Sn‖
‖Sn‖

)
We choose

δtn+1 =


min

(
θ,
αn

δtn

)
δtn if αn > δtn

δtn

min
(
θ,
αn

δtn

) if αn ≤ δtn

where ε is a given tolerance and θ is the maximal (given) value of δtn+1/δtn or δtn/δtn+1.
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Numerical experiments: A radial case

We look for a radial solution where the well is disk of radius Rw = 0.15m located at the center of
a reservoir of radius Re = 800m, i.e. Rw � Re .
We choose

pc = 0, S0 = 1, p0 = 1400 psi, pw = 100 psi, τ = 1 day

Tmax = 10000 days (more than 27 years)
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2-D Examples

Numerical simulations

A vertical well

A horizontal well
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