Finite Element Simulation of Coal-Bed Methane Reservoirs

Rachid Touzani

Clermont—Ferrand Il, France

Laurent Alessio
Leap Energy, Kuala Lumpur, Malaysia

MAMERN VI 2015 R. Touzani, L. Alessio



Introduction

CBM 7

Coalbed Methane (CBM) is a gas that occurs in association with coal. Methane is locked in coal
by the water in cleats. Gas production is generally facilitated by dewatering. Gas migrates then
through the coal matrix into the cleats. As more and more gas desorbs a two-phase flow regime
develops.
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Introduction

CBM 7

Coalbed Methane (CBM) is a gas that occurs in association with coal. Methane is locked in coal
by the water in cleats. Gas production is generally facilitated by dewatering. Gas migrates then
through the coal matrix into the cleats. As more and more gas desorbs a two-phase flow regime
develops.

The mathematical model

@ Modelling of immiscible two-phase fluid flow in porous media (water + gas)
o Gas is recovered by desorption from the coalbed matrix

o Model for 2-D configurations

o Capillary pressure is neglected

o Numerical approximation by finite elements
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Principle of the CBM process

PRODUCTION OF COALBED METHANE
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Gas recovery main procedures

GAS
CONVENTIONAL GAS SHALE

igration
oVEESiEPo ical times
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GEOLOGICAL TRAPS - DMETHANE




The model

We consider a flow in porous medium of an immiscible mixture of water and gas.
Let Sy, and Sg stand for the respective saturations of water and gas:

Sw+ Sz =1.
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The model

We consider a flow in porous medium of an immiscible mixture of water and gas.
Let Sy, and Sg stand for the respective saturations of water and gas:

Sw+ Sz =1.

Mass conservation for each phase:

o
a(d’gwsw) + V- (owvw) =0

0
E(qﬁ@gSg) +V-(egvg) =1fp

where:
ow, 0g  densities (water and gas)
é Porosity (0 < ¢o < ¢(x) < 1)
5] Rate of desorbed gas

In the following S =S, (S; =1-15).
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Darcy equation:

where

Vu, Vg

kw, kg
Hw, Hg

k
vy = ——KVp, vg:——gKVp
Hw Heg

Velocity of water and gas

Pressure (The same for both phases)
Relative permeabilities

Viscosities

Absolute permeability tensor (assumed diagonal)
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Darcy equation:

Vy = —QKVp7 Vg = —k—gKVp
Hw Heg
where
Vw, Vg Velocity of water and gas
p Pressure (The same for both phases)
kw, kg Relative permeabilities
Lw, ftg  Viscosities
K Absolute permeability tensor (assumed diagonal)

with:
kw = kw(S), kg = kg(S).
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Darcy equation:

Vy = —QKVp7 Vg = —k—gKVp
Hw Heg
where
Vw, Vg Velocity of water and gas
p Pressure (The same for both phases)
kw, kg Relative permeabilities
Lw, ftg  Viscosities
K Absolute permeability tensor (assumed diagonal)

with:
kw = kw(S), kg = kg(S).

We define the mobilities:

mu(s) = 2B) (s, p) = 6D
How reg(p)

m(S,p) = mu(S) + mg(S. p)

)
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The total velocity is defined by

V=V, +Vg=—
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m(S, p) KVp.

[m]



The total velocity is defined by

V=V, + Vg
We deduce the system of equations:

m(S, p) KVp.

1o}
5(¢Qw5) -V (ewmwKVp) =0

= (60s(1 = ) = V- (exmeKVP) = fo
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The total velocity is defined by

v=vy, +vg=-—m(S,p)KVp.

We deduce the system of equations:

1o}
a(lﬁgws) -V (ewmwKVp) =0

2 (6es(1=5)) =V - (smsKVp) =

We now assume that the water and the rock are slightly compressible, i.e.

1d
w = = fow _ Const. > 0,
ow dp
1d
cr = f—qs = Const. > 0,
¢ dp
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The total velocity is defined by

v=vy, +vg=-—m(S,p)KVp.

We deduce the system of equations:

0
5((1’@.”5) - V. (gmeKVp) =0

2 (6051~ 5)) ~ V- (0¢meKVp) = o

We now assume that the water and the rock are slightly compressible, i.e.

1d

w = = fow _ Const. > 0,
ow dp
1d

cr = 1d¢ = Const. > 0,
¢ dp

In addition, we consider a real gas model:
P
= —— h 0< Z(p) <1
2z(P) RTZ(p) ~ “Nere <Z(p) <
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We thus obtain

Oow op
Q. — SwOw > Vow = cwowV )
ot e at e Cw@ P
99 _

— Vo = Vp.
rie ¢ ¢ =crpVp

Neglecting nonlinear quadratic terms and dividing by o, the water conservation equation gives

S dp
= E_v. KVp) =
o) : + (cw + cf£)dS : V- (my p)=0
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The equation of gas becomes:

(61— S)og) = 61— 9)

Dog 6 as
TCe 1-89)2% _ g2
5 T el )5 ~ P,
op oS
= 0g(1— 5)(Cg + Cf)¢§ - ¢9g5
where
¢ s do  RT  pZ2(p)
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The equation of gas becomes:

o6, 05
ot %ot

op a5
=0g(1—5)(cg + Cf)‘f’a - ‘¥5an

01— S)og) = 61— 5) %5 + Gog(1 - )

where L L 2(p) - Z'(p)
g pP) — pP)P
cg(p) = = = 2
s(P) o dp  RT  pZ2(p)

Neglecting nonlinear quadratic terms and dividing by o, we get:
o

oS op
6 1a-5s P _v. (mKvp) =12
¢8t +( )(ce +Cf)¢at (mgKVp) 00
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Modelling of desorption

Denoting by V' the adsorbed gas volume, we have the source term

£ oV
D = —Pm0Ob ot

where on, and o, are the Methane and bulk densities.
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Modelling of desorption

Denoting by V' the adsorbed gas volume, we have the source term

ov

fp=— —_—.
D Om@b ot

where on, and o, are the Methane and bulk densities.
We have, at equilibrium, the Langmuir isotherm:

__Vip
pL+p

where:

@ p;: Langmuir adsorption constant

@ V|: Available gas volume
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Increasing Gas Storage Capacity

b Gas Production

Begins: : . : -
--------- W - Water Production- - - -
T T .........(............ . N
w
Initial

Pressure

Increasing Pressure
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In a thermodynamical nonequilibrium situation, we have
ov 1 Vv
WLy Ve
ot T pL+p
where 7 > 0 is a characteristic diffusion time.
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The complete model

We have the system:

os )
95>+ (cwd + er)S a_I: — V- (myKVp) =0

as o]
~65, + (1= 9)(6s + o) — V- (mgKVp) =

w(v_ﬁ)
TOg pL+p
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The complete model

We have the system:

s 9
¢ T (ewd+cr)S 6—': =V (mwKVp) =0

M(V_ﬁ)

s ap
_ 1— L _v. K =
¢ 5t +(1—=S)(cg +cr)o 0 V- (mgKVp) o o p

ov 1 <V Vip > —o

ot T\ p+p

We can resort to the so-called Peaceman formulation: Adding these two equations we obtain:

S op
— + + — — V- (myKVp) =
o) t (ewo + ¢f)S m (m p)=0

op _omob(\, Vip
ctqbﬁ v (mKVp) = —ng (V oL+ p)
oV 1 VLP
Sy = 222 =
ot T ( pL + p) 0

where ¢; = cwS + cg(1 — S) + ¢f is the total compressibility coefficient.
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Remarks

@ The main advantage of this formulation is that

m > mg >0 although mg >0,
i.e. the equation does not degenerate.

my, > 0.
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Remarks

@ The main advantage of this formulation is that

m > mg >0 although mg >0, m, >0.

i.e. the equation does not degenerate.

@ Although the Peaceman formulation seems attractive, its performance, from numerical point
of view, gives poor accuracy. We shall however keep here its presentation for its relative

simplicity.
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Remarks

@ The main advantage of this formulation is that
m > mg >0 although mg >0, m, >0.

i.e. the equation does not degenerate.

@ Although the Peaceman formulation seems attractive, its performance, from numerical point
of view, gives poor accuracy. We shall however keep here its presentation for its relative
simplicity.

© We have

V- (myKVp) = m,V - (KVp)+KVp-Vm, = m,V - (KVp)+m, (S)KVp-VS

which is a transport problem (for given p). This implies the necessity of using an upwind
scheme, if the capillary pressure is null (or small enough).
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Well modelling

In realistic situations, the domain (reservoir) contains wells with a small diameter (with respect to
the reservoir's diameter). This is generally at the origin of serious numerical difficulties.

Consider, for instance, the case of a vertical well. We assume that the flow is radial in the vicinity

of the well. We also assume that the flow is incompressible in this neighborhood and has constant
properties.
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Well modelling

In realistic situations, the domain (reservoir) contains wells with a small diameter (with respect to
the reservoir's diameter). This is generally at the origin of serious numerical difficulties.

Consider, for instance, the case of a vertical well. We assume that the flow is radial in the vicinity
of the well. We also assume that the flow is incompressible in this neighborhood and has constant
properties.

The flow is then modelled in this neighborhood, for the water phase by

qw
-V (mevap) = ﬁ

where ¢ is the Dirac distribution at the center of the well, g, is the well's production rate for the
water and H is the reservoir's height.
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Well modelling

In realistic situations, the domain (reservoir) contains wells with a small diameter (with respect to
the reservoir's diameter). This is generally at the origin of serious numerical difficulties.

Consider, for instance, the case of a vertical well. We assume that the flow is radial in the vicinity
of the well. We also assume that the flow is incompressible in this neighborhood and has constant
properties.

The flow is then modelled in this neighborhood, for the water phase by
qw
-V (mevap) = ﬁé

where ¢ is the Dirac distribution at the center of the well, g, is the well's production rate for the
water and H is the reservoir's height.
We obtain the analytical solution

r 1
PN =plr) = 5 (), r=(E+B)i-n
2mowmykH rw

where r,, is the well radius and k = /K11 K.
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Let ¢o denote the P1—basis function at node xp (well node), we have

owmyH Z /Kvp-gﬂo dx = qw
eCQg €

where € is the support de ¢y.

We assume that the analytical solution is a good approximation of the pressure at neighboring
nodes.
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Let ¢o denote the P1—basis function at node xp (well node), we have
owmyH Z /KVp -0 dX = quw
eCQg €

where € is the support de ¢y.

We assume that the analytical solution is a good approximation of the pressure at neighboring
nodes.

Using the expansion

p= Z Pipi in Qo
i

we get

owmwH Z Z (/KSOi - Vo dX)Pi = qw-

eCQo i €
Then

2
owmwH Y Ti(pi — po) = qu where T; = Z/ KV; - @o dx
i#0 (=1"¢
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Using the analytical solution, we obtain

qw =

Dizo Ti
F==X

Y 20 TiIn(ri/rw)

mewH(Pb - PO)
vicinity of a well.

We use the Kirchhoff transformation by defining

For the gas phase, the situation is more delicate: One cannot assume that

Then, we have

is constant in the

the solution of which is given by
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Using the analytical solution, we obtain

Well model for the water phase
2izo Ti
qw = & mewH(pb - PO)

1
1+ = >izo Tiln(ri/rw)

For the gas phase, the situation is more delicate: One cannot assume that g, is constant in the

vicinity of a well.
We use the Kirchhoff transformation by defining

p= [ ests)as

Po

Then, we have
—mgkAp = qgd
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Using the analytical solution, we obtain

Well model for the water phase
iz Ti
qw = z owmwH(ps — po)

1
1+ = >izo Tiln(ri/rw)

For the gas phase, the situation is more delicate: One cannot assume that g, is constant in the
vicinity of a well.
We use the Kirchhoff transformation by defining

P
p= [ os(s)as
PO

Then, we have
—mgkAp = qgd

the solution of which is given by

e | L)

P(r) = Blrw) = 2rmgrkH " rw
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Numerical approximation

We use a P;—finite element method with a Streamline Upwind stabilization term:
Let .7(2) denote a triangulation of Q and let us define the finite dimensional space:

S={1heC’Q); Yk €P1V K€ T(Q},

P={qeC’(Q); qx €PLV K e 7(Q)},
V ={W; W = Const. V K € 7(Q)}.
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Streamline Upwind stabilization

Consider the diffusion-convection equation
—ecAu—+a-Vu=f in Q

It is well known that if the local Péclet number

|ah
Pe=-—>1
€ 2¢e

then a standard (centered) discretization leads to a nonmonotone matrix and then to instabilities.
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Streamline Upwind stabilization

Consider the diffusion-convection equation
—ecAu—+a-Vu=f in Q

It is well known that if the local Péclet number

|ah
Pe=-—>1
€ 2¢e

then a standard (centered) discretization leads to a nonmonotone matrix and then to instabilities.

To remedy to this, a Petrov-Galerkin formulation has been proposed in the 80's by T.J.R. Hughes
et al. and analyzed by C. Johnson. It consists in the following variational formulation:

/EVuh~Vvdx+/(aAVuh)vdx—i—Zh—K/‘(a~Vuh)(a~Vv)dx:/fvdx Vve,
Q Q < 2lal Jk Q
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We define the variational formulation (We keep the same notation for the unknowns and their
approximations):

We seek S(-,t) € S, p(-,t) € P and V(t) € V such that for all ¢ € S and ¢ € P (assuming
Neumann boundary condition for pressure):

op
/¢ <,odx—‘,—/(cwqﬁ—‘,—c,c)S6 gpdx—}—/mWKVp Ve dx

Awi
H?

o (Xwi)

+ > EK/(KVp VS)(KVp - Vip) dx = — Z

KeT(Q

/cth@wdx—l—/mKVp-dex
Q Ot Q

Nw

ngb/ 1 VLP qgl
= — —(V — ——— | ydx— @ (Xwi
T Q Qg< PL+P> ; b1

v 1 ( Vip _v):o

ot  Tog \pL+p

v
with b
K ’
= S
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Numerical approximation: Time discretization

We choose the implicit Euler scheme:

1 1
E/Q(]ﬁnJrl(SnJrl _ Sn)(pdx+ E /Q(Cw¢n+1 + Cngl)(PnJrl _ p")apdx

+ / mPHKV P Vi dx

Nw n+1
n q
+ > e / (KVp" - VS (KVp" - Vi) dx = =3 =40 p(xui)
Ke T (Q) i=1
1
= / Mt (pn L pMYe dx + / m"KVp" . Vi dx
ot Q Q
n+1
Om@b 1 VL Pn+1 e gl
- Vn - . 11 - wi
T+6t/ng§“( pL+p"“) Z At
V, pn+1
vl — Vst
ot (T a pL +pn+1)

for all ¢ € S and ¥ € Po.

Note that the variable V is decoupled from S and p.
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Adaptive time stepping

For numerical simulations, we resort two adaptive time stepping, for at least 2 reasons

@ There is a singularity in initial data, due to the fact that we start with a saturation state
(§=1).

@ Realistic simulations require sudden changes of prescribed well pressures.
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Adaptive time stepping

For numerical simulations, we resort two adaptive time stepping, for at least 2 reasons

@ There is a singularity in initial data, due to the fact that we start with a saturation state
(§=1).

@ Realistic simulations require sudden changes of prescribed well pressures.

Then, in order to optimize the computational time, an adaptive time stepping procedure is used.
We use the following procedure:
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Adaptive time stepping

For numerical simulations, we resort two adaptive time stepping, for at least 2 reasons

@ There is a singularity in initial data, due to the fact that we start with a saturation state
(§=1).

@ Realistic simulations require sudden changes of prescribed well pressures.

Then, in order to optimize the computational time, an adaptive time stepping procedure is used.
We use the following procedure:

For all n, we compute

o =

o 8 (Il 57 =)

€ [l ISl
We choose
an
min (9, —) ot" if o > 5t"
dtn
ot = S5tn
o if a” < t"
in (6, &
mln( &n)

where € is a given tolerance and @ is the maximal (given) value of 6t"+1/5t" or 5t"/§t"*1.
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Numerical experiments: A radial case

We look for a radial solution where the well is disk of radius R,, = 0.15 m located at the center of
a reservoir of radius Re = 800 m, i.e. Ry < Re.
We choose

pc=0, Sp=1, po=1400 psi, pw =100 psi, 7 =1 day
Tmax = 10000 days (more than 27 years)
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2-D Examples

o A vertical well
@ A horizontal well
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